首页> 外文OA文献 >ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions-Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs
【2h】

ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions-Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs

机译:ENSEMBLES:用于季节至年度预测的新的多模型合奏-在DEMETER预报热带太平洋SST方面的技能和进步

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new 46-year hindcast dataset for seasonal-to-annual ensemble predictions has been created using a multi-model ensemble of 5 state-of-the-art coupled atmosphere-ocean circulation models. The multi-model outperforms any of the single-models in forecasting tropical Pacific SSTs because of reduced RMS errors and enhanced ensemble dispersion at all lead-times. Systematic errors are considerably reduced over the previous generation (DEMETER). Probabilistic skill scores show higher skill for the new multi-model ensemble than for DEMETER in the 4-6 month forecast range. However, substantially improved models would be required to achieve strongly statistical significant skill increases. The combination of ENSEMBLES and DEMETER into a grand multi-model ensemble does not improve the forecast skill further. Annual-range hindcasts show anomaly correlation skill of ∼0.5 up to 14 months ahead. A wide range of output from the multi-model simulations is becoming publicly available and the international community is invited to explore the full scientific potential of these data. Copyright 2009 by the American Geophysical Union.
机译:已使用5种最先进的大气-海洋环流模型的多模型合奏创建了一个新的46年后预报数据集,用于季节至年度的合奏预测。由于在所有交货时间均减小了RMS误差并增强了整体分散性,因此在预测热带太平洋海表温度方面,多模型优于任何单一模型。与上一代产品(DEMETER)相比,系统性错误已大大减少。在4-6个月的预测范围内,概率技能得分显示出与DEMETER相比,新的多模型总体技能更高。但是,将需要大量改进的模型来实现强大的统计显着技能提升。将ENSEMBLES和DEMETER组合成一个大型的多模型合奏并不能进一步提高预测技能。年距后预报显示在未来14个月之前,异常相关技能约为0.5。多模型仿真的广泛输出结果已公开提供,并邀请国际社会探索这些数据的全部科学潜力。美国地球物理联盟版权所有2009。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号